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Plausible Reasoning in Tactical Planning

Executive Summary

During the first year of the contract our work centered in four areas:

1. We developed a theory of human plausible reasoning which is detailed in
a paper entitled "the Logic of Plausible Reasoning: A Core Theory" by
Collins and Michalski which has been accepted by Cognitive Science, and
is included in this report. The theory was based on detailed analyses of

-~ human reasoning about geography occurring in natural contexts such as
tutoring and answering questions. The core theory constructed
characterizes people's plausible deductions, inductions, and analogies in
terms of MichalckVt variable valued logic calculus.

2. We analyzed transcripts from videotapes of military planners considering
where to deploy their troops in Europe against a particular massing of Red
troops. We subsequently interviewed one of the military planners, Col.
Fred Kulik, at length about how he thinks about different kinds of terrain
and obstacles in assessing where an enemy might move their troops. We
analyzed these protocols in terms of the theory of plausible reasoning
detailed in the paper described above.

3. We built a preliminary computer model embodying the theory of human
* plausible reasoning outlined in the paper by Collins & Michalski. Our goal

is to use the simulation as a means of testing and referring the theory.
This requires developing appropriate memory organization and search
techniques to support this style of inference, finding ways to estimate
similarity in specific contests, and investigating ways of combining
sometimes contradictory conclusions reached when inferences of different
types are used to answer questions. U

4. We wrote a paper analyzing the psychological literature on similarity and
analogy entitled "A Framework for a Theory of Mapping" by Collins and
Burstein. The paper analyzes the different kind of entities that are related
by analogy and similarity mappings, the different contexts and tasks that
give rise to mappings, and the set of issues and different resolutions to
these issues that have been proposed in the literature. This paper is also
included as part of this annual report.
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1. BACKGROUND FOR THE THEORY

The goal of our researcL on plausible reasoning is to develop a formal system

based on Michalski's variable-valued logic calculus (1980, 1983) that characterizes

different patterns of plausible inference humans use in reasoning about the wo~ ld

(Polya, 1958; Collins, 1978a). Our work attempts to formalize the plausible inferences

that frequently occur in people's responses to questions for which they do not have

ready answers (Carbonell & Collins, 1973; Collins, 1975a,b; Collins, Warnock, Aiello, &

Miller, 1975). In this sense it is a major departure from formal logic, which represents I.

normative theories of reasoning. Being descriptively based, it includes a variety of

'e . inference patterns that do not occur in formal logic-based theories. The central

goals of the theory are to discover recurring general patterns of plausible inferences

and to determine the parameters affecting the certainty of these inferences.

In order to analyze human plausible reasoning, Collins (1978b) collected a large

number of people's answers to everyday questions, some from teaching dialogues and

some from asking difficult questions to four subjects. These answers have the

following characteristics:

1. There are usually several different inference patterns used to answer any
* ** question.

2. The same inference patterns recur in many different answers.

3. People weigh different evidence that bears on their conclusion.

4. People are more or less certain about their conclusion depending on the
certainty of their information (either from some outside source or from
memory), the cLertainty of the inference patterns and associated parameters
used, and on whether different patterns lead to the same or opposite
conclusions.

The analysis of the answers attempts to account for the reasoning and the

conclusions drawn in terms of a taxonomy of plausible inference patterns. As will be

evident, this is an inferential analysis. To use Chomsky's (1965) felicitous terms, we

are trying to construct a deep structure theory from the surface structure traces of
the reasoning proccss.

'S
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We will illustrate some of the characteristics of people's answers, as well as some -

of the inference patterns formulated in the theory with several transcripts. The first-

transcript comes from a teaching dialogue on South American geography (Carbonell &

Collins, 1973) (T stands for teacher and S for student): F

T. There is some jungle in here (points to Venezuela) but this breaks into a

savanna around the Orinoco (points to the Llanos in Venezuela and Colombia).

S. Oh right, is that where they grow the coffee up there?

T. I don't think that the savanna is used for growing coffee. The trouble is the

savanna has a rainy season and you can't count on rain in general. But I

don't know. This area around Sao Paulo (in Brazil) is coffee region, and it is

'N sort of getting into the savanna region there.

In the protocol the teacher went through the following reasoning. Initially, the

teacher made a hedged "no" response to the question for two reasons. First, the

teacher knew that coffee growing depends on a number of factors (e.g., rainfall,

temperature, soil, and terrain), and that savannas do not have the correct value for

growing coffee on at least one of those factors (i.e., reliable rainfall). In the theory

this is an instance of the inference pattern called a dlerivationt from a mutual

implication. Second, the teacher did not know that the Lianos was used for growing

coffee, which he implicitly took as evidence against its being a coffee region. The

inference takes the form "I would know the Llanos produces coffee if it did, and I

don't know it, so probably it does not." This is called a lack -of -knowledge inference

(Collins et al., 1975; Gentner & Collins, 1952). This inference pattern is based on

knowledge about one's own knowledge and hence is a meta-knowledge inference.

Then the teacher backed off his initial negative response, because he found

positive evidence. In particular, he thought the Brazilian savanna might overlap the

coffee growing region in Brazil around Sao Paulo, and therefore might produce coffee.

If the Brazilian savanna produces coffee, then by functional analogy (called a
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simnilarity transform in our theory) the Lianos might. Hence, the teacher ended up

saying "I don't know," even though his original conclusion was correct.

C".

The teacher's answer exhibits a number of the important aspects of human

N4 plausible reasoning. In general, a number of inference patterns are used together to

Rl derive an answer. Some of these are inference chains where the premise of one

inference draws on the conclusion of another inference. In other cases the inference

patterns are triggered by independent sources of evidence. When there are different -

sources of evidence, the subject weighs them together to determine a conclusion and

the strength of belief in it.

It is also apparent in this protocol how different pieces of information are found

over time. What appears to happen is that the subject launches a search for relevant

information (Quillian, 1965; Collins & Loftus, 1975). As relevant pieces of information

are found (or are found to be missing), they trigger particular inferences. Which 9,

inference pattern is applied is determined by the relation between the information

found and the question asked. For the question about growing coffee in the Llanos, if

the respondent knew that savannas are in general good for growing coffee, that would

trigger a deductive inference. If the respondent knew of a similar savanna somewhere

that produced coffee, that would trigger an analogical inference. The search for

information is such that the most accessible information is found first, as by a marker

passing or spreading activation algorithm (Charniak, 1982; Quillian, 1968).

In the protocol, the more accessible information about the unreliable rainfall in

savannas was found before the less accessible information about the coffee growing

region in Brazil and its relation to the Brazilian savanna. The order of finding

information reflects its decreasing accessibility as activation spreads through a 0

semantic network (Quiflian, 1968). Relevant information is found by autonomous search

processes, and the particular information found determines what inferences are

triggered.

The next protocol illustrates a plausible deduction, called a specialization

'Itransform in the theory (Q stands for questioner and R for respondent):

Q. Is Uruguay in the Andes Mountains"

-No.

3 1



R. I get mixed up on a lot of South American countries (pause). I'm not even

sure. I forget where Uruguay is in South America. It's a good guess to say

that it's in the Andes Mountains because a lot of the countries are.

A. The respondent knew that the Andes are in most South American countries (7 out

of 9 of the Spanish speaking countries). Since Uruguay is a fairly typical South

American country, be guesses that the Andes may be there too. He is wrong, but the

conclusion was quite plausible. This example illustrates a speci~aliza~tion transform and

two of the certainty parameters associated with it ;frequency (he knows the Andes

are in most countries), and typicality (Uruguay is a typical South American country). 0

The third protocol illustrates another kind of plausible deduction, called a

de rivation from mutual implication in the theory:

Q. Do you think they might grow rice in Florida?

*R. Yeah, I guess they could, if there were an adequate fresh water supply.

Certainly a nice, big, warm, flat area.

VThe respondent knew that whether a place can grow rice depends on a number

of factors. He also knew that Florida had the correct values on at least two of these

factors (warm temperatures and flat terrain). He therefore inferred that Florida could

grow rice if it had the correct value on the other factor he thought of (i.e., adequate

fresh water). He may or may not have been aware that rice growing also depends on

fertile soil, but he did not mention it here. Florida in fact does not produce rice in 0

any substantial amount, probably because the soil is not adequate. This protocol

shows how people make plausible inferences based on their approximate knowledge

about what depends on what, and how the certainty of such inferences is a function of

the degree of dependency between the variable in question (rice) and the knownS

variables (i.e. terrain, climate, water).

The fourth protocol from a teaching dialogue illustrates a functional analogy, -.

called the similarity transform in the theory.

44



S. Is the Chaco the cattle country? I know the cattle country is down there

(referring to Argentina).

T. I think it's more sheep country. It's like western Texas, so in some sense I

guess it's cattle country. The cattle were originally in the Pampas, but not

so much anymore.

N As in the first protocol, the respondent is making a number of plausible

inferences in answering this question, some of which lead to different conclusions.

First, he thinks that the Chaco is used for sheep raising, but there is some

uncertainty about the information retrieved, which leads to a hedged response. This

supports an implicit lack -of -knowvledge inference (a meta-knowledge inference), that

takes the form "I don't know that it's cattle country, and I would know if it were (e.g.,

I know about sheep), so it probably is not cattle country." But then the teacher

noted a similarity between the Chaco and western Texas, presumably in terms of the

functional determinants of cattle raising (e.g., climate, vegetation, terrain). This led

him to a very hedged affirmative response, based on a similari&ty transform. Finally

the teacher alluded to the fact that the Pampas is the place in Argentina known for

cattle, and the place the student most likely was thinking of. This argues against the

Chaco having cattle based on another meta-knowledge inference, a cont usability0

inference (Collins, 1978b): "The Chaco is confusable with the Pampas and the Pampas

has cattle, so the fact that there are cattle in Argentina cannot be taken as evidence
for cattle in the Chaco." In answering this question, then, two patterns of plausible ...

inference led to a negative conclusion and one to a positive conclusion. -

The fifth protocol illustrates both a similarity and a dissimilarity transform, and
more importantly, the distinction between inferences based on overall similarity and '

those based on similarity with respect to the functional determinants of the property :

in question.

Q. Can a goose quack?

R No, a goose -well, its like a duck, but its not a duck.

%I



It can honk, but to say it can quack. No. I think its

vocal cords are built differently. They have a beak

and everything, but no, it can't quack.

The similarity transform shows up in the phrases, "it's like a duck" and "They

have a beak and everything" as well as the initial uncertainty about the negative

conclusion. It takes the form, "A duck quacks and goose is like a duck with respect

to most features, so maybe a goose quacks". The certainty of the inference depends -

on the degree of similarity between ducks and geese.

But then two lines of negative inference led the respondent to a negative

conclusion. First there is a lack- of -knowledge inference implicit in the statement "It

'pA can honk, but to say it can quack." She knew about geese honking but not about

their quacking. Therefore, she thought she would know about geese quacking, if in

fact they did quack.

The second line of negative inference (apparently found after she started

answering) is the dissimilarity inference evident when she says, "I think its vocal

cords are built differently". The dissimilarity inference takes the form "Ducks quack,

%: geese are dissimilar to ducks with respect to vocal cords, and vocal cords determine

the sound an animal makes, so probably geese do not quack". This inference was

MR enough to lead her to a strong "no". Of course she knew nothing about the vocal

cords of ducks and geese, because they don't have any. She was probably thinking of

the difference in the length of their necks. Our own hypothesis is that longer necks K
resonate at lower frequencies and hence honking can be thought of as deep quacking.

These five examples illustrate a number of aspects of human plausible reasoning

as it occurs in common discourse. They show how people bring different pieces of

knowledge to bear on a question and how these pieces sometimes lead to the same

conclusion and sometimes to different conclusions. Often knowledge is found after the

respondent has started answering, so that the certainty of the answer seems to ,
change in midstream. The examples also show how people's approximate functional

knowledge of what depends on what often comes to play in different inferences such

as deductions and analogies. Therefore these dependencies are a central part of the

6
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core theory we have developed. We will return to these examples to illustrate how the

formal rules we have developed can be used to characterize different plausible

inferences seen in these examples.

In our development of the theory to date we have not tried to characterize all

the different types of plausible inferences that occur in the protocols. In particular

we have not formalized the spatial and meta-knowledge inferences shown above. This

INN project presents a core system centered around the plausible deductions, analogies,

and inductions, seen most frequently in the protocols. In future work we plan to

extend this core system to encompass the other patterns of inference, such as spatial

and meta-knowledge inferences (Collins, 1978 a,b).

V,
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2. ASSUMPTIONS UNDERLYERG THE THEORY N

The theory assumes that a large part of human knowledge is represented in

structures, we call dynamic hierarchies, that are interconnected by traces. Each

hierarchy represents knowledge about a class of concepts arranged in a tree

structure according to some viewpoint. Traces represent paths linking nodes in

different hierarchies that record beliefs about the world. These beliefs can be
recorded by our senses or derived by inference. The theory presented here shows

that certain types of plausible inferences can be viewed simply as perturbations of .

traces in the knowledge structures.

The hierarchies are dynamic in that they are always being updated, modified or %

expanded. In the core theory described here we distinguish between two basic kinds .*

of hierarchies, type- and part -hierarchies (Collins and Quillian, 1972). A type-

hierarchy (also called an abstraction or is-a hierarchy) is organized by the type

relation holding between connected nodes, or more precisely, between concepts

represented by the nodes. A part-hierarchy is organized by the part-of relation

holding between connected nodes. Any given node may be a member of more than one

hierarchy. Each such hierarchy characterizes the node from a different viewpoint. !

Nodes of a hierarchy may represent classes (e.g., flowers), individuals (e.g., a

specific flower) or manifestations of individuals (e.g., a specific flower at a given -.

9moment). For the purpose of the theory, manifestations are treated just like

individuals or classes.

Figure 1 shows examples of type- and part -hierarchies. In the first four

examples (la,b,c,d), the Lianos is viewed from four different perspectives. These

perspectives are organizing principles of the hierarchies (Bobrow and Winograd, 1977).

The type-hierarchy in figure la is organized according to the type of terrain. The

type of terrain can be mountainous, plateau, hilly, or plain, etc. The Llanos is

characterized as a type of plain, like the Chaco. The type-hierarchy in figure lb is

type of savanna, which is one of the major land types that geographers divide the

world into, including rain forests, deserts, steppes, M~editerranean climates, mid-

latitude forests, etc. The part-hierarchy in figure Ic is organized according to

0
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regions in South America: the Andes, Amazon Jungle, Lianos, Guiana Highlands, and

their subregions in different countries. The part-hierarchy in Figure id represents

South America broken down into countries and the subregions within each.

Insert Figure 1 here

The other three examples in Figure 1 are designed to illustrate how different

descriptors also are represented in hierarchies. Among colors there are green and

red. Among reds there are scarlet and burgundy, and among scarlets there are bright

scarlet and perhaps dull scarlet, etc. Color is a one-place descriptor applying to

objects, but feeling emotion is a two place descriptor where X (a person) feels the .%
emotion toward Y (any concept). In the emotion hierarchy there are many types of

emotions, among them love and hate, and there are different kinds of love, such as

romance, affection, motherly love, etc. In the weight hierarchy there are different 5

kinds of weight, such as human weight which in turn might be divided into birth

weight and adult weight. For birth weight one might think of 1 lb. as a minimum, 15

lbs as a maximum, and 7 lbs as the norm. For the purposes of the theory these can -

be thought of as different valuies of birth weight, just as red and green are different

values of color. These examples are not meant to show how people represent such

concepts, but to give an idea as to how the hierarchies can represent different kinds

of information.

As mentioned above, traces represent recordings of information within the

hierarchies. They are paths connecting the nodes of two or more hierarchies that

represent beliefs about the world. Figure 2 shows examples of traces representing the%

beliefs that there are daffodils and roses in England, and that John's eyes are blue.

The traces can have annotations describing their origin, their frequency of use, the

certainty of belief in their correctness, and other information. The links denoting the

type and part relation in generalization hierarchies can also be viewed as traces, but

for the purpose of theory we will distinguish them from other traces. The knowledge

organization described above includes various elements of semantic network structure

(Carbonell & Collins, 1973; Collins & Quillian, 1972; Quillian, 1965) and frame structure.0

(Bobrow & Winograd, 1977;- Minsky, 1975, Schank & Abelson, 1977; Winograd, 1975).

9
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Terrain Lndtype

SMutiPlis Rain Forest F-an

Chaco 

\-

Llanos Mato Grosso "lanos

(a) (b) Llanos in
rainy

season

South America South America

Lanos Colombia Venezuela"

~Ande s

Colombian Venezuelan
Llanos lanos Colombian Venezuelan enezuelan

Llanos Llanos Andes "

.
(c) Orinoco Delta (d)

Feel Emotion

Green Hate LoveN Scarlet 

•-i

B r n 
F e e l R o m a n t i c

Burgundy Affection R
Bright
Scarlet

(e)

':: 
BodyWeightht

Fish Weight Human Body Weight
' ~ ~Birth 

'

WeightAdult Weight

lib 71bs 151bs 50 lbs 150 lbs 1000 lbs 
.

(g)

Figure 1. Examples of hierarchies.



Insert Figure 2 here 0

Let us explain some of the elements of annotations of a trace. By the origin of

a trace we mean the information specifying whether the trace is a recording of a

sense observation, an assertion obtained from a source of information (e.g., another

person), or a statement derived through inference. Frequency of use or importance

(Carborall & Collins, 1973, Collins & Quillian 1972. Collins & Loftus 1975) represents

the ease of traversing a particular link, or the accessibility of one concept from

another. Certainty of belief is discussed in detail in the next section.

A trace may be a recording of information about one's beliefs, or denote the

applicability relation between the nodes of different hierarchies. The applicability

relation between a node A and a node B states that node A can be used as a -

descriptor of node B., i.e., that A can be used to characterize node B. We write such a

relation as a term

A(B)

For example, the node "color" in hierarchy le applies as a descriptor to node
"eyes" of hierarchy lh. This is denoted as "color(eyes)." The node "eyes" can in turn

be applied as descriptor to the node, say, John, in some hierarchy describing people.

e , To express both relations we would write:

color(eyes(John)) %.

A term A(B) can take a value only from the set of subnodes of A, i.e., the

Ie, descendants of the node A in the hierarchy. The set of subnodes which can actually
be a value of term A(B) is called the domain of term A(B). Applying a descriptor to an

argument (node or a sequence of nodes) A produces a specific value characterizing the

argument. This implies that only non-terminal nodes of a hierarchy can be

descriptors. For example, to state that the color of the eyes of John is blue, a trace

would be created that links John, color and blue as shown in Figure 2. To express

this formally, we write:

10



sWorld

Asia

daffodils roses England

flowers (England) = {daffodils, roses. . .}

color person

eyhose man woman
blue

red

color (eyes(John)) - blue

Fx

• .'Figure 2. Examples of two traces on statements
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color(eyes(John)) =blue

In the theory such an expression is called a statement.

N, The applicability relation observes an important property. If it has been

observed that A in a type-hierarchy is a~pplicable to B in a type-hierarchy, then we

can infer that A is applicable to any subnode of B, and that any supernode of A is
R, applicable to B. For example, assume that the node "eyes" applies to "person". One

can infer that also "organ" applies to "person" and that "eyes" applies to "woman."

Part-hierarchies, for the most part, follow the same rules as type -hierarchies with -

some restrictions, such as the fact that a descriptor applicable to one node may not

always apply to a subnode (e.g. capital applies to states but not to cities).

It is important to mention at this point that the applicability relation is learned
like any other relation. This relation does not act as a "selection restriction"

assumed by some linguists. Its violation is not considered to be a semantic anomaly,

but rather as a new information to be made consistent with the existing knowledge
structures. For example, when one hears that "an idea is green," then usually one

tries to make sense of it rather than reject it as an anomalous expression.

Figure 3 illustrates the fact that the hierarchies are partial orderings, and can

be differentiated or collapsed as appropriate for the purpose of drawing plausible

inferences. At a fairly early age children think of animals as coming in different

types: dogs, cats, fish, birds, etc. They don't differentiate them much more than that. C

When they get to school they may learn there are different basic types of animals, sB.

such as fish, birds, reptiles, mammals, and amphibians, and that dogs are cats are

types of mammals. Still later in biology this hierarchy might be differentiated much 0

more finely as in Figure 3c. But the early links are never lost; they are in fact used

all the time in reasoning about the world. For the purpose of the theory, therefore,

F,. any hierarchy can be collapsed or differentiated as long as the partial orderings in

the hierarchy are maintained. 0

Insert Figure 3 here
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Animals -

Birds. Cats Dos0'

Fish

AnimalsI

mmlFish Mammals

Reptiles Birds
Amphibians D

Dogs Cats

Animals

Invertebrates Vertebrates

Dogs :,,

Fish

Figure 3: Differentiation of Hierarchies i

'a.,,

0

*w...%Fgur 3:V' Differentiation,% of Hierarchies...

'~.***'*'** % % '%~ % \'V *%



Table 1 shows hypothetical frame structures for a few concepts in someone's

memory (Collins & Quillian, 1972; Collins et al, 1975). These examples are not meant toa

provide a detailed analysis of how concepts are represented, but rather to illustrate

how the statements shown in later examples can be constructed from a memory

structure. In the example, type and part relations form the basis for hierarchical

structures such as those shown in Figures 1 and 3. Flowers are represented as a

type of plant coming in at least four varieties (i.e. roses, etc.), having various parts,

various colors, and growing in all countries. Each descriptor (i.e. type/of, types,

parts, color, countries) might be further specified as to how it relates to the concept

4h~ flower (e.g., type/of is a biological class, colors are surface features of the petals,

countries are places where flowers are grown, etc). Daffodils, which are a particular

type of flower, provide further specification for each of the variables in the concept

of flowers. That is, they have petals and a stem, they come in yellow and perhaps

other colors, and they are grown in at least England and the United States. The

frame for red is shown to illustrate how a color concept points back to various

objects which it describes. Finally let us stress that we have not concerned ourselves

with exactly how concepts are represented, but rather we have assumed they are

represented in a structure similar to these examples.

InetTable 1 here

.1' Any node in a hierarchy can potentially be a descriptor for a node in another

hierarchy. For example, if flower is in a hierarchy of things and England is in a

hierarchy of places, flower-type might be a descriptor for England. This produces a

statement of the form: S

(1) flower-type (Englond)-idatfodils, roses..

In (1) flower-type is a descriptor, England is an argument, flower-type (England) is a
PO term, and daffodils and roses are references for the term. The brackets and dots

indicate that daffodils and roses are not assumed to be a complete set, although the

* *,,,person may not know other flowers of England. Any descriptor, as a node in a

hierarchy, can be further differentiated. For example, flowers can be differentiated

between naturally- growing flowers vs. flowers grown in greenhouses, or between

flowers sold vs. flowers grown, etc. People make finer or less fine discriminations

12



Table I

Hypothetical Frames in a Person's Memory i

•
flower

type/of =(plant)

types =Irose, daffodil, peony, bougainvillea ...

parts =Ipetals, stem ..-I

colors =Ipink, yellow, white, red ...I

countries =Iall countriesi

daffodil

type/of =(flower)

parts =Ipetals, stem ... I

colors =Iyellow ... I

countries =fEngland, United States ... I

red

type/of =(color)

types =Iscarlet, burgundy ...I"

flowers =Iroses, tulips ... I

vehicles =Ifire engines, London buses ... I

V VW': -'



depending on their knowledge and purposes, and a theory of plausible reasoning must

accommodate these different degrees of discrimination.

Whether a particular descriptor applies to any argument depends on what

knowledge the person has. For example, it is not clear what red-type (England) might I.

mean because one probably doesn't have knowledge in one's data base about the color

of England (though one might interpret the term as the color of any part of England, -

such as the Union Jack and London buses). a,

Examples (2) to (8) below illustrate how different descriptors apply to different

concepts:

(2) England-part (daffodil)-|Southern England...1

(3) daffodil-part (England),,petals. stem...I

(4) country-type (daffodils),,temperate countries...I

(5) daffodil-type (England), yellow daffodils...I

*j (6) England-type (daffodils),England in the springi

(7) love-type (John. Mary),,offection... I

(8) give-type (John. Mary. scarf)-igift-giving...

Examples (2) and (3) illustrate statements based on part hierarchies. In (2) the

descriptor selects the part of England where daffodils occur. In (3) the descriptor
selects the parts of daffodils that occur in England; presumably daffodil parts in

England are the same as daffodil parts anywhere in the world (though perhaps Martian

daffodils are quite different). In (4) country-type applied to daffodils selects the

types of countries that have daffodils (i.e., temperate countries). Statement (4) could

have specified the particular countries (e.g. England, France) that have daffodils, since

hierarchies can be collapsed as long as a partial order is maintained. In (5) daffodil-

type applied to England selects the different daffodil types found in England, of which .

only one type is stored (i.e., yellow daffodils), though there may be others. In (6) we

show that when you take an instance like England and look at its subtypes you get a

manifestation, in this case the manifestation(s) that have daffodils. Finally, (7) and (8)

13 I.



I

illustrate multiple place predicates describing John's love of Mary, and John's giving a

scarf to Mary as a gift rather than loaning it or giving it away to get rid of it. These

examples show how different terms are evaluated within the theory.

MThese examples illustrate the most important assumptions we are making about

how human memory is organized and accessed for the purposes of making plausible

inferences. Further descriptions of our underlying assumptions about human memory

are given in earlier papers (Carbonell & Collins, 1973; Collins & Loftus, 1975; Collins &

Quillian, 1972; Collins, Warnock, Aiello & Miller, 1975).

-,
r. 4
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3. RIMITIVES IN THE CORE SYSTEM,

In the core system we have developed there is a set of primitives and a set of

basic inference rules. In this section we describe the primitives in the system,

consisting of basic expressions, operators, and certainty parameters.

Table 2 shows the basic elements in the core system. Arguments can be any

node in a hierarchy, or a function of one or more nodes such as Fido's master or the

flag of England. Descriptors apply to arguments, and together they form a term, such

as breed (Fido). The reference for a term can be either a definite set of values such

as collie, or brown and white, or an indefinite set of values such as brown plus other

colors (or possibly no other colors).

V

Insert Table 2 here

Statements consist of a term on the left of an equals sign and a reference on

the right, together with a set of certainty parameters. Expressions (1) through (5)

above were all statements, without the certainty parameters specified. The operator

*statements shown below in Table 3 are a special class of statements. The certainty

parameters can be thought of as approximate numbers ranging between 0 and 1. but

*we have represented them as verbal descriptions. In the example shown, e refers to

how certain one is the statement is true, and to the frequency that if something'p

is a bird it can fly. These certainty parameters are all listed in Table 4, to be

discussed later.

The last two types of expressions represent functional dependencies between

different variables. Dependencies between terms represent the functional relationship

between two terms, such as between the average temperature of a place and the

latitude of the place. The dependency can be annotated to different degrees: it can

be unmarked meaning there exists some functional relation the two, it can be marked

with + or - indicating a monotonic increasing or decreasing relation, or it can be

further specified to any degree (e.g., a V-shaped function with 3 values specified).

For example, if one thinks that average temperature of a place in January varies
between about 850 at the equator and -300 at the North Pole and + 300 at the SouthZ

15 -



ONNA Table 2

Elements of Expressions 0

arguments al, a2 , f(al)
Ole e.g., Fido, collie, fido's master

descriptors dl, d2

e.g., breed, color

terms dl(al), d2 (a2 ) d2 (d (a1 ))

e.g., breed (Fido), color (collie), color (breed (Fido))

references r,, (r 2 ,r3 ), $r2 ...I
e.g., collie, brown and white, brown plus other colors

statements d1(a,)=r1 : -V
e.g., means of locomotion (bird)=Iflying...]: certain, hiigh

frequency 'V

dependencies between terms d(al)<--->d((a 1 ): 04 , lei

e.g., latitude (place) < - --- > average temperature (place): *

moderate, moderate, certain

implications between
statements dl(al)=rl<===>d 2 (f(a1 ))=r 2 : Ok, ,

e.g., grain (place)=Irice...I <===> rainfall (place)=heavy:
high, low, certain

A 9'



Pole, this relation can be represented as a V-shaped function with values (-900, 300),

(00, E150) and (900, -.. 30"), where the *first coordinate is latitude and the second

4 temperature. The Q1' and ~8 parameters specify the degree of constraint in the

dependency from latitude to temperature and from temperature to latitude,

respectively. In the latitude -temperature example the degree of constraint is

moderate in both directions, as is discussed later.

7V

Implications between statements relate particular values of functions such as the%

latitude -temperature function above (e.g., latitude (place) = equator <=> average

temperature (place) = hot). The example shown in the table relates the grain of a

place being rice to the rainfall of the place being heavy (e.g., >40 in/year). Knowing

a place produces rice predicts that it will have heavy rainfall quite strongly, so that

O( is high (though there are exceptions like Egypt where rice is grown by irrigation).

However the fact that the rainfall of a place is heavy (e.g., Oregon) only weakly

predicts that rice is grown, so 6 is low. In general mutual implications between

statements will be asymmetric in this way. K

Table 3 illustrates the four operators in the core system and the kinds of

statements they occur in. The generalization and specialization operators go up and

down in a hierarchy, while the similarity and dissimilarity operators go between nodes

at the same level in a hierarchy. Associated with the GEN and SPEC operators there

is a typicality parameter 'r (Rosch, 1975; Smith & Medin, 1982), and with the SIM and

LN DIS operators there is a similarity parameter T. There is also a dominance parameter

associated with GEN and SPEC statements that specifies what proportion of the

superset, the subset actually comprises. Finally all the statements involving operators
have a certainty parameter ~'associated wit'" them.

Insert Table 3 here

Typicality and similarity are always computed in some context which is denoted

by the CX variable. The first variable in the CX denotes a node in the argument

hierarchy specifying the range of arguments over which typicality or similarity areN:
.

computed. For GEN and SPEC this is always the superset specified in the statement

(e.g., for chicken=SPEC (barnyard fowl), barnyard fowl is the superset over which

16%,
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Table 3

Operators

'C

Generalization a'=GEN(a) in CX(a,D): ,, J

e.g., bird=GEN(chicken) in CX (birds, physical features):
certain, atypical, low dominance

Specialization a'=SPEC(a) in CX(a',D): b' " s
e.g., chicken=SPEC(barnyard fowl) in CX (barnyard fowl,

food cost): certain, typical, moderate dominance

Similarity a'=SIM(a) in CX(A D): . , " 4%

e.g., ducks=SIM(geese) in CX(birds, all features): certain, •
highly similar

Dissimilarity a'=DIS(a) in CX(A,D): ,

e.g., ducks=DIS(geese) in CX(birds, neck length): certain,
fairly dissimilar 0

V.4
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typicality is computed, but for SIM and DIS it is the basic level category (Rosch 1975;

Smith & Medin, 1982) to which the two arguments belong that is the basis for

computing similarity. Hence the similarity of ducks and geese would normally be

computed in the context of birds, which is their basic level category.

The second variable in the CX specifies the set of descriptors to be used in

7, comparing the two nodes with respect to typicality or similarity. For example, one can

evaluate how typical chickens are as birds with respect to their physical features,

with respect to all their features, or with respect to some particular feature such as

the cost of feeding them. Similarity and dissimilarity can also be computed with

respect to different features. As we discussed with respect to the fifth protocol

shown earlier, ducks and geese are quite similar when compared on all their features,

but they are dissimilar in neck length (which is relevant to determining the sound

they make). The procedure for computing typicality and similarity is described below.

Table 4 lists the certainty parameters we have identified so far that affect the

certainty of different plausible inferences. We will describe each of these parameters

in terms of the examples given above. The description is meant to specify our best

hypothesis about how people might compute these parameters.

Insert Table 4 here

The c< and 13 parameters can best be introduced in terms of the example:

grain(place)=Irice...<===>rainfall(place)=heavy. As we said, 0< would be high in such

case if a person thinks that most places that grow rice have heavy rainfall (say > 40

inches per year), whereas jG would be low if he or she thinks there are many places

with heavy rainfall, that don't produce rice. We can construct a hypothetical table

that represents this view in terms of a small sample of places and the frequencies with

which they have heavy rainfall and produce rice:

Rice No Rice Total

, Heavy Rainfall 8 8 16

No Heavy Rainfall 2 20 22

Total 10 28 38

17% ,%1..



a) Table 4

Certainty Parameters0

c( Likelihood that the right-hand side of a dependency or

implication is in a particular range given that the

left-hand side is in a particular range.

0
SLikelihood that the left-hand side of a dependency or

implication is in a particular range given that the

right-hand side is in a particular range.

~*Degree of certainty that a statement is true (i.e., degree

of belief).

*tDegree of typicality of a subset within a set (e.g., robinIl

is a typical bird and ostrich is an an atypical bird).

dDegree of similarity of one set to another set.

SFrequency of the reference in the domain of the descriptor

(e.g., above 90% of birds fly). V

6Dominance of a subset in a set (e.g., chickens are not dominant

among birds, but are dominant among barnyard fowl).

%a
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Given this table (DI is simply the conditional probability that a rice-producing

place has heavy rainfall, in this case 8 of 10 or .8 and ft is the conditional probability

that a place with heavy rainfall produces rice, in this case 8 of 16 or .5. We don't

think that people actually construct such tables though they may consider a small

number of cases in computing rough estimates of Lx and ~6.as they do in using the

availability heuristic (Tversky & Kahneman, 1973).

The c( and g parameters for mutual dependencies cean be constructed by an

extension of the procedure for mutual implications. Suppose one considers the

relationship of rainfall and grain growing as before, but instead as a mutual

dependency (i.e., grain (place) <--> rainfall (place). For simplicity we can present

the same hypothetical table in revised form:

Rice Wheat Corn Total

Heavy Rainfall 8 6 2 16
Light Rainfall 2 14 6 22
Total 10 20 8 38

Then o.( reflects the degree to which you can predict whether a place has heavy

or light rainfall, given the predominant grain grown in the place, which is quite high

(i.e., the prediction is correct in 25 or 35 cases or .7 assuming an optimal guessing

%I strategy). Similarly,19 reflects the degree to which you can predict whether they grow
1

rice, wheat, or corn, given the amount of rainfall (i.e., the prediction is correct in 22

of 35 cases or .6, assuming an optimal strategy of guessing wheat for light rainfall and

rice for heavy rainfall). This example makes evident the fact that the O( and
19 parameters reflect the way the dependency partitions the known cases in the

world.

' The rparameter in Table 3 reflects the certainty or subjective likelihood with

which a person believes any expression is true. Ican reflect different possible

sources of uncertainty. One source arises when people retrieve a fact from memory

and are uncertain they may be making a memory confusion. Another basis for

uncertainty arises when they doubt the source from which they got the information.

* "a-Finally, if a piece of information derives from a plausible inference, there will be

uncertainty as to whether the conclusion is correct, and this uncertainty will

propagate to inferences dependent on it. All these sources of uncertainty are

represented by the !Yparameter.



Typicality (r) and similarity (or) can be thought of as the same parameter: in

the case of typicality it is computed between a subset and its superset, and in theI! case of similarity it is computed between two subsets. We assume that any set (or
concept) is represented as a bundle of features (Collins & Quillian, 1972), and the

'r and T parameters are computed by comparing the two concepts with respect to

those features specified by the descriptor variable in the context CX. For example,

"chicken" might be compared to "bird" with respect to size or with respect to all its

physical features to determine its typicality. For a continuous variable like size,

typicality or similarity is determined by computing how close (normalized between 0

and 1) the two values are in the distribution of sizes for the class specified by the

context CX (e.g. birds). For discrete variables like "ability to fly", the two concepts

either match or not (assigned either I or 0). Typicality or similarity are based on the

average score for all the features compared, weighted for their criteriality or

importance (Carbonell & Collins. 1973; Collins & Quillian, 1972).

Frequency (0) and dominance (d() reflect different ratios that affect the

certainty of plausible inferences in systematic ways. Frequency reflects the

proportion of members of the argument set that can be characterized by the reference

specified. It reflects what "Some" or "All" reflect in logic (e.g., "Some men have

* arms"), but as a continuous variable between 0 and 1. For the statement "means-of-
locomotion (birds)=Iflying.. [," is the proportion of birds that fly to the total of all

birds. The dominance of a subset within a set ((f) applies only to generalization and

specialization statements. It reflects the proportion of members of the set that are O

members of the subset specified in the statement. For example, chickens constitute a

high proportion of barnyard fowl, but not of birds in general.

This completes our summary of the primitives in the system. We will now

describe the different plausible inference forms in the core system.

19
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4. TRANSFORMS ON STATEMENTS

The simplest class of inferences in the core theory are called transforms on

statements. If a person believes some statement, such as that the flowers growing in

England include daffodils and roses [i.e., flower -type(England) =Idaffodils, roses...]

there are eight transforms of the statement that allow plausible conclusions to be

drawn. These eight transforms can be thought of as perturbations of the statement

either with respect to the argument hierarchy (starting from England) or the

reference hierarchy (starting from daffodils and roses). The argument-based

transforms move up (using GEN), down (using SPEC), or sideways (using SIM or DIS) in

the argument hierarchy. Similarly the reference-based transforms move up, down, or

sideways in the reference hierarchy. Thus each of these transforms is a perturbation

in one of the two hierarchies.

Let us illustrate the eight transforms on statements in terms of hierarchies for

England and roses. Figure 4 shows a part hierarchy for England and a type hierarchy

for roses and daffodils that someone might have. If the person believes that,

"flower -type (England)= Idaffodils, roses .. ] ," then Table 5 shows eight conclusions that

the person might plausibly draw.

Insert Figure 4 and Table 5 here

The first GEN inference is that Europe as a whole grows daffodils and roses.

N1 This may not be true: Daffodils and roses may be a peculiarity of England, but it is at

least plausible that daffodils and roses are widespread throughout Europe. Similarly,

for the SPEC relation it is a plausible inference that the county of Surrey in southern

- ' England grows roses and daffodils. There is an implicit context (CX) in GEN and SPEC

transforms, that will be discussed later.

The SlIM and DIS inferences are also made in some context. In the case of the

argument-based transforms the context might be "countries of the world with respect

to the variable climate." Holland is quite similar to England with respect to climate,

while Brazil is quite dissimilar. The variables over which the comparison is made may

be few or many, but people will make the comparison with respect to those variables

20
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Table 5

Eight Transforms on the StatementI "flower-type(England)= I daffodils, roses... "

Argument-based Transforms

(1) GEN flower-type(Europe) = $daffodils, roses...

(2) SPEC flower-type(Surrey)= Idaffodils, roses...

(3) SIm flower-type(Holland)=I daffodils, roses...

(4) DIS flower-type(Brazil)# I daffodils, roses... ~'8

Reference-based Transforms

(5) GEN flower-type(England) = Itemperate flowers...I

(6) SPEC flower-type(England) = Iyellow roses...I

(7) SIm flower-type(England)= 1peonies... I

(8) DIS flower-type(England)6 bougainvillea...

* *18



that they think are most relevant to the question (e.g., whether they grow daffodils in

Holland). That is, they base their inference on whatever mutual dependency most

constrains the descriptor in question. In this case the flowers grown in a place

depend highly on the climate of the place, but hardly at all on the longitude of the

place. Therefore climate is a reasonable variable on which to make the comparison.

We will refer to this issue later when we talk about how different parameters affect

the certainty of any statement transform.

) The reference transforms are perhaps easiest to understand if you substitute a -

fictional place like Ruritania for England, because other inferences are not invoked so

easily. If one believes they grow daffodils and roses in Ruritania, then one might infer

they grow temperate flowers in general there, and yellow roses in particular. It is

also reasonable that they grow peonies there, since they are similar to roses and

daffodils as to the climates they grow in. But bougainvillea grows in more tropical

climates, so it is unlikely to grow in Ruritania (Ruritania is, after all, a small little
kingdom and unlikely to encompass different climates--this is a supporting inference).

These examples should give a feel for how the transforms on statements are made.

4.1 Certainty Parameters Affecting Transforms on Statements

In this section we will discuss how different certainty parameters affect the

various transforms shown in Table 5.

Typicality. Typicality (t) affects the certainty of any GEN or SPEC transform as

shown in Table 6. In argument-based transforms the more typical the subset is of the

set in the argument hierarchy, the more certain the inference. For example, in Table P

5 inference (1) is more certain the more typical England is as part of Europe.

Insert Table 6 here

In making plausible inferences people compute typicality with respect to those

variables, such as climate, that they think flower growing depends on. Thus, if Surrey

is thought to have a typical climate for England, and climate is thought to predict the

types of flowers grown in a place, then the inference is more certain.
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Table 6

Effects of Different Parameters on Statement Transforms

Transforms Parameters Target Node
in Table 50'c 

0

1 GEN + 0 + + + Europe

Argument- 2 SPEC + 0 + +~ + Surrey
Based

3 SI1 0 . . . 0 Holland

N4 DIS 0 - + - 0 Brazil

5 GEN + 0 + + + Tropical Plants

Reference- 6 SPEC + 0 + + + Yellow Roses

Bsd7 SlIM 0 . . .- 0 Peonies

;A DIS 0 - + - 0 Bougainvillea

Note: As the value of the parameter increases, a + means it has
a positive effect on the certainty of the inference and
a - means it has a negative effect on the certainty of

the inference.

.I~%



This example reveals Z.he muttual dependency implicit in any statement transform.

The mutual dependency relates the set of variables on which the typicality or

similarity judgment is made (e.g., climate or all variables) to the descriptor in question

(e.g., flower-type). If the typicality judgment is made considering all variables (as

when we said Surrey is a typical English county), the transform will be inherently less

certain because of the weak dependency between most variables and any descriptor

such as flower-type. Therefore, if you know that Surrey is typical of England in

general, it leads to a less certain inference than if you know Surrey is typical of

England with respect to climate.

In a reference-based transform typicality works the same way, except that it is

computed with respect to the subset and its superset in the reference hierarchy. In

inference (5) in Table 5, the greater the typicality of daffodils and roses as temperate

plants, the more certain the inference. Similarly in the inference (6). the greater the

typicality of yellow roses as roses, the more certain the inference. Pink roses are
more typical than yellow roses, and so they are even more likely to be found in

England (or Ruritaniia for that matter). Again the inference is more certain if

typicality is measured with respect to the climate in which the flowers are grown. N

Similarity. Degree of similarity (r) affects the certainty of any SIMl or DIS

inference as shown in Table 6. Like typicality, similarity can be computed over all

variables or over a subset of variables (e.g., climate) that are particularly relevant.

Degree of similarity increases the certainty of SIMl inferences and decreases the

certainty of DIS inferences, as would be expected. In Table 5, therefore the inference

(3) that Holland has daffodils and roses is more certain the more similar Holland is to
England with respect to climate or whatever variables one thinks flowers are related 0

to. The inference (4) that Brazil does not have roses and daffodils is more certain

the less similar Brazil is to England. The inference (7) that England has peonies is

more certain, the greater the similarity of peonies to both daffodils and roses. The

inference (8) that England does not have bougainvillea is more certain, the less similar

bougainvillea is to daffodils and roses. More particularly bougainvilea is dissimilar in

that it tends to grow in warmer climates than daffodils and roses.

Mutual Dependency. Every transform on a statement involves an implicit mutual
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dependency. The inference is always more certain the greater the dependency (0)

* between the variables on which typicality or similarity are measured and the variable

in question as shown in Table 6. If climate were the variable used for measuring

* typicality and similarity, the argument-based transforms would be more certain the

more the climate of a place constrains the flowers grown in the place. The mutual
dependency is slightly different for reference-based transforms. They would be more

certain, the more the climate where flowers grow constrains the places where flowers v
grow.

Frequenc. The frequency (0) of the reference set within the domain of the

argument affects the certainty of all eight inferences, as shown in Table 6. For an

instance, e.g. England, frequency with respect to the argument set only makes sense

if you think of England as a set of small parts (say 10 miles square) and count the

frequency of parts that have daffodils and roses vs. those that do not. The more

frequent daffodils and roses are in the parts of England, then all but the DISIl

inferences are more certain. For example, roses and daffodils are more likely to

occur in Holland or Surrey if they are very frequent in England. The two DIS
inferences go in the opposite direction. For example, the less frequent are daffodils

and roses in England, the more likely bougainvillea will be found there (though this is I

a very weak inference).

Dominance. Dominance (a') affects GEN and SPEC inferences as is shown in Table

6. In all cases, the greater the dominance of the subset, the more certain theb

inference. For example, for (2) if Surrey comprised most of England it would be a

more certain inference that it has daffodils and roses, than if it is a very small area

in England. Similarly for (6) if yellow roses were the most dominant kind of roses,

they would be more likely found in England than if they are a rare type of rose.

4.2 Formed Representation of Transforms on Statements

Table 7 shows the formal representations we have developed for each of the
eight transforms on statements in terms of the variable-valued notation of Michalski .

(1983). Most of the examples shown are from protocols we have collected (Collins,

1978b), some of which appear in the first section of this paper. We will briefly

describe each of the examples.%

23
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Insert Table 7 here

We can illustrate an argument-based transform or GEN with the inference that if

chickens have gizzards, then birds in general may have gizzards. The first premise,

represents the belief that chickens have gizzards: presumably almost all chickens have

gizzards so the frequency (0) and the certainty (t) arer high. The second premise
d,

represents the belief that chickens are birds, and that they are typical with respect

4to their biological characteristics. As we pointed out earlier, the subset dominance

(4)of chickens among birds is low. The third premise states that the internal organsD

of a bird depend highly on the biological characteristics of the bird. 1he conclusion

that birds have gizzards is fairly certain given the high values of the critical

variables.

The argument-based transform on SPEC is illustrated by an example from the

beginning of the paper where the respondent inferred that the Andes might be in

Uruguay. The respondent believed that the Andes are in most South American

countries, so frequency (q6) was moderately high. With respect to the second premise,

Uruguay is a typical South American country, which increases the likelihood that the

Andes would be found there. But its low subset dominance (d') in terms of the

proportion of South America that Uruguay comprises makes the inference less likely.

With respect to the third premise, the fact that Uruguay is typical of South American

countries in general only weakly predicts that it will include the Andes mountains.

Altogether, tbe inference is fairly uncertain given the moderate frequency and the low

subset dominance of Uruguay.

We can illustrate the argument-based transform on SIM4 with the Chaco protocol

from the beginning of the paper, where the respondent inferred that the Chaco might

produce cattle given that west Texas did. In the first premise, frequency (45), which

reflects the degree to which different parts of west Texas have cattle, is high, which

makes the inference more likely. The second premise asserts that the Chaco is a least

moderately similar to west Texas in vegetation (or whatever variables the respondent

had in mind). The third premise .elates vegetation of a region to its livestock, which

is a strong relation, given that cattle will usually be raised where the vegetation will

support them. The fourth premise merely establishes the fact that west Texas and

24



Table 7

Formal Representations of Statement Transforms

(1) Argument-based transform on GEN

d(a)=r: ,,
a'=GEN(a) in CX (a',D(a'): t,&'
D(&') < .. .> d(a'): c., e3

d(&') = r; f ( , €,¢, ,

Internal organ (chicken) = Igizzard ... : r, =high, c =high
Birds = GEN (chicken) in CX (bird, biological characteristics(birds)):

Ct =high, e, =high, (=low
Biological characteristics (birds) < - --- > internal organs (birds):

oI=high, 8"5=high

Internal organs (birds) = )gizzard ... : =high

(2) Argument-based transform on SPEC

; , ~d(a)=r: ,€

a'=SPEC(a) in CX (a, D(a)): T,

D(a) < - --- > d(a): o(,

, r~ed d(a') =r: '= f (cK,',' , ,

JMountains(S.A. country) jAndes ...I: ,=high, O=high,
Uruguay=SPEC(S.A. country) in CX(S.A. country, characteristics(S.A. country)):

'" =high, e =high, d =low
Characteristics (S.A. country) <----> mountains (S.A. country):

o( =moderate, t,=high

Mountains (Uruguay) = jAndes ... I: td=moderate

,¢o

=* ,-
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(3) Argument-based transform on SIM

d(a) = r
a' = SIM (a) in CX (A, D(A)):O, T,
D(A) < -.-.. > d(A): a, /.

a, a' = SPEC (A): e, tV5

d(a') = r: f= 0.T ,I.4.r s

-J Livestock (West Texas) = Icattle ... : e, =high, 0 =high
Chaco = SIM (West Texas) in CX (region, vegetation(region)):

ir =moderate, n =moderate
Vegetation (region) <- - - -> livestock (region): t4=high, r'=high
West Texas, Chaco = SPEC (region): =high, Ir.=high

Livestock (Chaco) = Icattle ... : =moderate

(4) Argument-based transform on DIS

d(a) = r:,,'
a' = DIS(a) in CX(A, D(A)): T, ,
D(A) < -.-.. > d(A):. , ,'

a, a' = SPEC(A): t., rs .

d(a')6 r: e= f , 0.V .N

Sound (duck) = (quack): =high, -high
Goose = DIS (duck) in CX(bird, vocal cords (bird)):

=low, =moderate
Vocal cords (bird) < - --- > sound (bird): =high, =low

Duck, goose = SPEC (bird): =high, =high
,----------------------------------------------------

Sound (goose)#quack: r=low

F''
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(5) Reference-based transform on GEN

d(a) = $r .. 1:
r' = GEN (r) in CX(d, D(d)): !, , g

D(d) < - --- > A(d): o4 ,
a = SPEC (A): ,

d(a) = Ir'...I: = f

Agricultural product (Honduras) = lbananas ...1:

a, =unknown, 4' =high,
Tropical fruits = GEN (bananas) in CX(agricultural products,

climate(agricultural products)): 't=-high, K =high, 46 =low
Climate (agricultural products) < - --- > Place (agricultural products):

a =high, ex =high
Honduras = SPEC (place): t =high

Agricultural products (Honduras)=Itropical fruits...1: k=moderate

(6) Reference-based transform on SPEC

d(a) = $r ...: ,,
r' = SPEC (r) in CX(d, D(d)): lx, ,
D(d) < -.-.. > A(d): , 0( Zr

a = SPEC (A): r

d(a) = sr'...] ' = f (;, 4,T, e ,, ,)

Minerals (South Africa) = Idiamonds. A , = L,/ ,'
Industrial diamonds= SPEC(diamonds) in CX(minerals, characteristics(minerals)):

-C=high, e.=high, 4 =high
Characteristics(minerals) < - --- > Place (minerals):

al =moderate, b =high
South Africa = SPEC (place): c=high

Minerals (South Africa) = jindustrial diamonds ...: r =high

%,

N N
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(7) Reference-based transform on SIM

~d(a) = Ir ... 1: 6 ,

r' = SIM (r) in CX(d, !)(d)): C,
: " D(d) < -.... > A(d): , 5

a = SPEC (A): r4

d(a) = Ir'...]: ?f= ('o ,¢j,, )

Sound (wolf) = howl.. 1: , =high, * =high,
Bark = SIM (howl) in CX(sound, means of production(sound)):

=high, Ir,.=high
Means of production (sound) < - --- > animal (sound): ot,=high, 4rS =high
Wolf = SPEC (animal):C4=high

Sound (wolf) = fbark...]: r=moderate

(8) Reference-based transform on DIS

d(a) = Ir... :

r' = DIS (r) in CX(d, D(d)): r, K
D(d) < ---- > A(d): ok , eS
a = SPEC(A): 'qK

d(a)#t Ir'... 1: "=f( , ,4 , ,r).

4.S
Color (Princess phones) = $white, pink, yellow... 1: , =high, 4 =high
Black = DIS (white & pink & yellow) in CX(color, hue(color)):

' cr=low, irz=high
" Hue (color) < - --- > object (color):Ok=low, 4=high %

Princess phone= SPEC (object): =high 4'

--

Color (Princess phones)#Iblack...]: e--moderate

,A
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Chaco are regions, in support of the secotid and third premises. The conclusion is

only moderate in certainty, given our assumption of uncertainty about how similar the

Chaco and west Texas are.

To illustrate the argument-based transform on DIS, we chose the example from

the protocol shown earlier as to whether a goose quacks. The first premise reflects

the respondent's belief that ducks quack, which was very certain. The second premise

states the belief that ducks and geese are dissimilar in their vocal cords which the

respondent must have been at least a bit uncertain about (hence the low certainty

assigned to the statement). The third premise relates the sound a bird makes to its

vocal cords, which also must have been an uncertain belief given that it is not true.

The certainty of the conclusion that geese do not quack should have been fairly low

(though other inferences led to the same conclusion in the actual protocol).

We have created an example to illustrate a reference-based transform on GEN.

since there are none in the protocols. The first premise asserts that Honduras

produces bananas among other things. Bananas are a fairly typical tropical fruit in

terms of the climates where they are grown, as the second premise states. The third

premise asserts that the climate appropriate for agricultural products constrains the

places where they are grown fairly strongly. The conclusion follows with moderate

certainty that Honduras produces tropical fruits in general, such as mangos and

coconuts.

We also created the example of a referenced-based transform on SPEC. The first

premise states that South Africa produces diamonds. Industrial diamonds are a kind

of low quality diamond (used in drills) and they must be fairly dominant (d) among

diamonds given their low quality, though they are not particularly typical of what we
6 

"'C

think of as diamonds. Here is a case where high dominance compensates for low

typicality. The third premise is somewhat irrelevant since the typicality is low. But

C"' the inference is quite certain given the high dominance of industrial diamonds among

diamonds.
0.'

The example of a reference-based transform on SIM is drawn from a protocol

where the respondent, when asked whether wolves could bark, inferred they probably

could (Collins, 1978b). One of his inferences derived from the fact that he knew

25
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wolv'es could howl, with both high frequeiicy and certainty. He also thought that

barking was similar to howling in terms of the way the sound is produced (a howl, as

it wreis a sustained bark). Further the animals that make a particular sound

depend on the means of production of the sound, as the third premise states. It

follows then with at least moderate certainty that a wolf can bark.

The example of a reference-based transform in DIS is from a protocol where the

respondent was asked if there are black princess telephones (Collins, 1976b). The

respondent could remember seeing white, pink and yellow princess phones, as the first

premise states. Here the frequency (40) of these colors among those she had seen

seemed quite high, which counts against the possibility of black princess phones. The

41 0second premise reflects the fact that black is quite dissimilar to those colors in terms

of hue. The third premise states that the object associated with a particular color

depends weakly (*,is low) on the hue of that color (i.e., knowing the hue only

somewhat constrains the object). The conclusion that princess phones are not black

is uncertain given the low a'. in the third premise.

PSS
I %,
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5. OTHER INFERENCES IN THE CORE THEORY

There are a number of other inference patterns in the core theory we have

NO developed. In this section we will give the formal representation for each of the other

I inference patterns together with an example of each.

Table 8 shows that two types of derivation from mutual implication that occurred

in the protocols shown at the beginning of the paper. The positive derivation

illustrates how multiple conditions were ANDed together (i.e., a warm climate, heavy

rainfall, and flat terrain) as predictors of rice growing. The belief that Florida has all

three leads to a prediction that rice will be grown there. In the actual protocol the

respondent was unsure about rainfall in Florida, and so concluded that rice would be

grown if there was enough rain (i.e., Rainfall(Florida) = heavy <==f>

Product(Florida) = Irice ... I). This is a slight variation on the positive derivation that

can be represented as follows:

d1 (a) = r I Ad 2 (a) = r 2 <==> d,(a) r 3 all

d,(a') = r1  : ,

5 a' = SPEC(a) :
d2 (a') = r 2 <==> d3 (a') =r3: = f( c, ,,

Insert Table 8 here
"A,?

The negative derivation illustrates the fact that if any of the variables on one

side of a mutual implication that are ANDed together do not have the appropriate D

values, then you can conclude that the variable on the other side does not have the

value assumed in the mutual implication. In the example, because the Llanos did not

have reliable rainfall, the respondent concluded that the Llanos probably did not

produce coffee. If variables are ORed together (e.g., either heavy rainfall or irrigation

are needed for growing rice) a different pattern holds: having one or the other

predicts rice is grown and having neither predicts no rice is grown.

Table 9 shows the equivalent representations for derivations from mutual

2



Table 8

Formal Representations of Derivations from Mutual Implication

Positive Derivation

dj(a) - r, <==> d 2(a) = r2: ,,''

di(a') = r, : ', 2

a' = SPEC(&) : e
' d2 (a') = r2  1= f(,.',., '~,.

Climate(place) = warm A Rainfall(place) = heavy Terrain(place) = flat <==>
Product(place) = frice...I : o = high, r = certain

Climate(Florida) = warm : 0, = moderately high, 4' _ = certain 0
Rainfall(Florida) = heavy : 6=. moderate, a, = uncertain
Terrain(Florida) = flat :0 3 = high, e. = certain

Florida = SPEC(place) : eg-- certain
Product(Florida) = rice... = uncertain

Negative Derivation

d,(a) =r 1 <=> d2 (a) = r 2 : ,k 4r

dl(a') r, : , 2
a' = SPEC(a) ri

,., ~ ~~d2(a') # r2: =f , ,, ,

Rainfall(place) = reliable A climate(place) = subtropical <==>
Product(place) = 1coffee...I :o.= moderate, t = certain

Rainfall(Llanos) # reliable : = high, e-.= fairly certain
Llanos = SPEC(place) : 2r%= certain 5
Product(Llanos) # 1coffee... I = fairly certain

.5-
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Ladependencies. It is impossible to draw a negative conclusion from a mutual

dependency, since it denotes how a whole range of values on one variable relates to a

range of values on another variable. But the inference patterns are different forso

positive and negative dependencies, so we have separated them in the table.

Insert Table 9 here

The positive dependency represents the case where as one variable increases,

4V the other variable also increases. In the formal analysis we have denoted the entire

range of both variables by three values: high, medium, and low. When a positive

dependency holds, if the values of the first variable is high, medium, or low, the value

of the second variable will also be high, medium, or low, respectively. This is the

weakest kind of derivation possible from a mutual dependency: In the example, if a to
L.

* person knows that the temperature of air predicts the water holding capacity of air,

and he knows that temperature of the air outside is high, then he can infer that theo.r

* air outside could hold a lot of moisture. People make this kind of weak inference very

frequently in reasoning about such variables (Collins & Gentner, in press; Stevens &

Collins, 1980).

The pattern for the negative dependency is reversed: if the value of one variable

is high, the other is low, and vice versa. We have illustrated the derivation from a

negative dependency in terms of a more precise dependency between two variables. If
* )~,a person believes that the latitude of a place varies negatively (and linearly) with the

temperature of the place, and also that the average temperature is near 85 degrees at

the equator and 0 degrees at the poles, then he might conclude that a place like Lima,

Peru, that is about 10 degrees from the equator, has an average temperature of about

75 degrees. People have both more and less precise notions of how variables interact,

and we have tried to preserve flexibility within our representation for handling these

different degrees of precision. f

Table 10 shows two forms of a transitive inference, one based on mutual

implication and the other based on mutual dependency. The example for mutual

implication states that if a person believes an average temperature of 85 degrees

IMP implies a place is equatorial, and that if a place is equatorial it will tend to have high

humidity, then he can infer that if the average temperature of a place is 85 degrees it

28
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Table 9

Formal Representations of Derivations from Mutual Dependencies 0

Derivation from Positive Dependency4q
d1 (a) <-----> d2 (a) :',

d1 (a') = high, medium, low : , -

a' = SPEC(a) : 0r .

d 2 (a') = high, medium, low = f( , ,, '3 J)

Temperature(air) <--±--> Water holding capacity(air) :O = high, b'= certain

Temperature(air outside) = high . = high, f = certain
Air outside = SPEC(air) : 's= certain S
Water holding capacity(air outside) high : = certain

Derivation from Negative Dependency

d,(a) <------> d2 (a) :, L

d,(a') = high, medium, low :, .

a' = SPEC(a)

d2 (a') = low, medium, high = ,, 4b,

Abs. Val. Latitude(place) <------> Aver. Temperature(place): linear;
00 , 850; SOO, 0°; o(= moderate, e, = certain

Abs. Val. Latitude(Lima Peru) 100 :0= high,",.= fairly certain
Lima Peru = SPEC(place) = certain

Aver. Temperature(Lima Peru) = 750: r= moderately certain

,.2,
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will tend to have high humidity, and vice versa. This example illustrates the way

people confuse causality and diagnosticity in their understanding. If one were to

write the causal links for this example, it would probably go from equatorial latitude
to high temperature to high humidity. But people do not systematically make a

distinction between causal an igotclinks, nor do thysoetig nsuch a

systematic order. For example, they may know that equatorial places, such as jungles,

have high humidity and not link it explicitly to their high temperature. Thus, the

inference in this example derives a more direct link (temperature <=> humidity) from

a less direct link (latitude <==> humidity). It also should be noted that the diagnostic

link in the first implication (temperature => latitude) may be more constraining than

the causal link (latitude => temperature). That is, there are probably more equatorial

places where the average temperature is not 55 degrees (e.g. Ecuador), than places

where the temperature is 55 degrees but are not equatorial.

Insert Table 10 here

The example for a transitivity inference on mutual dependency illustrates how

people reason about economics (Salter, 1963). Salter asked subjects questions, such

as what is the effect of an increase in interest rates on the inflation rate of a

country. People gave him chains of inferences like the one shown: if interest rates

increase, then growth in the money supply will decrease, and that in turn will cause

the inflation rate to decrease (the latter is a positive relation). So an increase in

interest rates will lead to a decrease in the inflation rate. This kind of reasoning is a

major way that people construct new mutual inplications and dependencies.

Tables 11 and 12 show a set of transforms on mutual implications that follow the

same pattern as the transforms on statements in the previous section. Table 11 shows

f our reference transforms that parallel the last four statement transforms shown in

Tables 5 and 7. (In fact there is a quite direct equivalence, because any statement

can be transformed into a mutual implication in the following way: Flowers (England)

) daffodils ... I goes into type(place) = England <==> flowers(place) = Jdaffodils ... 1, or

more generally, d(a) =r goes into type(A)=a <==> d(A) = r.) We have represented the

three positive transforms (i.e. generalization, specialization, and similarity) in the rule

at the top, with the three alternatives shown (GEN, SPEC, and SIM) where they occur

29



Table 10

Formal Representations of Transitivity Transforms

On Mutual Implication

d,(a) = r, <==> d2 (a) = r , B,, d,
d_(a) = r. <==> d,(a) = r3 :0,, 13#

d,(a) = r, <==> d3 (a) = r3 1. = f(o,,L,), t3=1(o,,J r= f(,,.)

Aver. Temperature(place) = 850 <=> Latitude(place) = equatorial
o(= high, ,= fairly high, d = certain

Latitude(place) = equatorial <==> Abs. humidity(place) = high

c=E high, &= moderate, oF certain
Aver. Temperature(place) = 850 <-=> Abs. Humidity(place) = high

5,o(.= high, $= low, = certain

On Mutual Dependency

d(a) < - -> d(a) ol

d (a) < - - > d3(a) cW f- f( q,, s ), j f( , rt) b = f( 't )

Interest rates(country) <---> Money supply growth(country):
Of , = high,#, = moderate, , certain

Money supply growth(country) < -> Inflation rate(country):
V, = high, 137 = high, = certain

Interest rates(country) <-"-> Inflation rate (country):
= high, J3 = low, r = certain

S -V
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in the rule. The typicality parameter (-C) is asso'oiated with the GEN and SPEC

transforms, and the similarity parameter (C) with the SIML transform. The example

omits the certainty parameters for simplicity. In English the example states the

following: given the belief that if a place is subtropical, it is likely to produce

oranges, this implies that if a place is subtropical, it is likely to produce citrus fruits

(a generalization), or naval oranges (a specialization), or grapefruit (a similarity

transform). The dissimilarity transform at the bottom follows the same pattern: if you

think that subtropical places produce oranges, and apples are dissimilar to oranges

with respect to their growing conditions, then probably subtropical places do not

produce apples.

Insert Table 11 here

Table 12 shows the corresponding four types (i.e., GEN, SPEC, SIML, and DIS) of

argument transforms. These correspond to the first four statement transforms shown
in Tables 5 and 7. We illustrate the four with a demographic example: if one believes

that men who live in the tropics have a short life expectancy and that farmers are

typical of men in terms of their demographic characteristics, then one can plausibly

infer that farmers have a short life expectancy if they live in the tropics. Similarly.

rone can infer that people in general and women (because they are similar to men in

their demographic characteristics) have short life expectancy in the tropics. Finally, -

one might conclude that birds do not have a short life expectancy in the tropics, if

one thinks they are dissimilar to men in their demographic characteristics.

Insert Table 12 here "

Table 13 shows the corresponding positive transforms for mutual dependencies. ~
We have illustrated these with another example from economics: if one believes thatr

the business tax rate in a state negatively impacts the amount of investment in the

state, then one might generalize this relationship to any governmental unit, or

particularize it to Illinois, or conclude that it would also apply to Canadian provinces.

There is really no negative transform based on dissimilarity that corresponds to these

three positive transforms. For example, if one believes that communist countries are

quite dissimilar from states in their economics, the most one can conclude is that

o~.4.



Table 11

Formal Representations of Reference Transforms on Mutual Implications

Positive Transforms

d 1(a) = r, <==> d2 (a) = r2 :'r,, e

IGEN I
r,= SPECI r2 in CX(d2 D(d2 )) :', 6"5

ISIMI
D(d,) <--> A(d,, ) : ,',

d,(a) = r, <==> d2 (a) - r' 2  f(,

Climate(place) = subtropical <==> Fruit(place) = foranges...I

,Citrus fruitsi $GEN I
,Naval orangesi = ISPECI (oranges) in CX (fruit, growing conditions(fruit))
JGrapefruitI )SIM I
Growing conditions(fruit) <--> Place(fruit)

)Citrus fruit...}
Climate(place) = subtropical <==> Fruit(place) - INaval oranges... I

IGrapefruit.. .

Negative Transform
~ 1 (a ) = r , <==> d2(a) =r2:¢ ,

r'2 = DIS r2 in CX (d2, D(d2 )) :0, .
. , D~d ) < --> A(d,) ell.,

d1(a) = r, <==> d2 (a) $ r'2  %= , ,

Climate(place) = subtropical <==> Fruit(place) = joranges...I

Apples = DIS(oranges) in CX (fruit, growing conditions (fruit))
Growing conditions(fruit) <--> Place (fruit)
Climate(place) = subtropical <==> Fruit(place) # $apple...I

4%
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Tadle 12

Formal Representations of Argument Transforms on Mutual Implications S

Positive Transforms

dl(a) = <==> d2 (a) = r 2 :° c

IGEN I nA
a' = ISPECI (a) in CX : .3(A))

ISIM I
d,(A) <---> d,,(A): -, 5

d(a ) = r, <===> d2(a ) = r2

Habitat(man) = tropics <==> Life expectancy (man) = short 0

e, IGEN I (farmer)
Man = ISPECI (person) in CX(people, demographic characteristics(people))

4SIM I (woman)
Demographic characteristics(people) <--> life expectancy(people)

(farmer) (farmer)
Habitat (person) = tropics <==> life expectancy (person) = low

(woman) (woman)

Negative Transforms

dl(a) = r, <==> d 2(a) = r2 :O- 1, r1

a' = DISa) in CX(A, d3(A)) c _
2 ~~d,(A) <--> d,(A) :,, '

d(a') = <==> d2(a') = W, f ,-,

Habitat(man) = tropics <==> life expectancy(man) = short
Man = DIS(bird) in CX(animals, demographic characteristics (animals))
Demographic characteristics(animals) <--> life expectancy (animals)
Habitat(birds) = tropics<==> life expectancy(birds) = low

e ter

., % -. & Z e

as a A'..- . g F .~ i



V.A

thiere i'; no aiegative relation between the busirn'ss tax rate (if there were one) and

the amount of investment; that is to say, no conclusion can be drawn. In such a case
0

we just omit the form from the theory, because the theory does not specify

conclusions that cannot be drawn. Similarly, there can be no reference transforms on

mutual dependencies, because they do not involve a reference term.

Insert Table 13 here

.NO
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Table 13

Formal Representations of Argument Transforms on Mutual Dependencies S

Positive Transforms

dj(a) <-±--> d2(a) :ckt, e%,'

fGEN
' = iSPEC (a) in CX (A, d3 (A)) <r e

iSIM I

da oomcsAlce <--> Amut fivetetAlc) ?q
r. (gvrmn unt=gvrmn nt t

dl(a') <=

Business tax rate (state) <--> Amount of investment (state))
lGovernment unitj I GENI
flllinois I SPECI (state) in CX(place, economics (place))
jProvince I ISIM I
Economics(place) <--> Amount of investment(place)

(government unit) (government unit)
Business tax rate (Illinois) <-> Amount of investment (Illinois)

(province) (province)

%
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S. CONCLUSION

The difficulty in constructing a theory of plausible reasoning from analyzing

actual cases of human reasoning is that the theory is likely to be underconstrained.

That is to say, there may be many cases where people could employ a particularP

reasoning pattern, but do not because of other constraints on its invocation. As it

stands now, the only constraints we place on the invocation of any inference pattern

is that its premises be satisfied and that its certainty parameters not drive the

conclusion below some threshold level of certainty. But there may well be other

£ factors that constrain the invocation of any inference pattern.

In order to test out the core theory, we plan to build a computer system

incorporating the reasoning patterns derived from our analysis. We will then be able

to see what inferences the system draws given different knowledge bases. We plan to

evaluate the theory in a series of experiments comparing the system's reasoning to

that of expert human reasoners. To do this we will ask expert human reasoners,

working from well-specified, small knowledge bases to draw plausible conclusions from -

each knowledge base and to estimate the certainty of each conclusion. These experts

will be asked to put aside, as best they can, other knowledge they may have about the

domain.

At the same time we will run the system on each small knowledge base to see

what plausible conclusions the system draws, and with how much certainty. For each

knowledge base, then we will have three different classes of inference: conclusions --

both computer and experts draw, conclusions the computer draws but experts do not,

and conclusions experts draw that the computer does not draw. The two non-

overlapping lists require different kinds of refinement to the theory. Where the

computer draws a conclusion experts do not, we will go to the experts to see if the

conclusion seems at all plausible to them. If not, then the set of inference rules must*'*

be modified to prevent such implausible conclusions from being drawn. Where experts

draw a conclusion that the computer does not, we will first have to ascertain if they%

are drawing upon information the computer does not have. If not, then new inference

rules must be added to the system to produce the conclusions that the human experts

drew. The modifications to the theory will be implemented iii a new version of the

system, and the whole process will recycle until a stable state is reached, where the

system and expert reasoners draw the same conclusions from new knowledge bases.
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1. INTRODUCTION

The literature on similarity, analogy, and metaphor ranges over many different

kinds of mappings. Some of the disagreements arise because researchers are talking

about different kinds of mappings or the different contexts in which mappings are

made. Our goal is to clarify the issues being addressed and the critical distinctions

that need to be made. We will attempt to consider the entire territory over which the

discussion of mapping arises, but no doubt we will miss some of the critical

distinctions and issues.

We have divided the paper into three main sections. The first section

distinguishes the different kinds of entities that are related by analogy and similarity

mappings, and some of their more salient properties. The second section discusses the !

different contexts or tasks that give rise to mappings. The third section catalogues

the set of issues we have identified in the literature, and identifies some of the

different solutions proposed or possible for each issue. In a concluding section we

briefly discuss the implications of this framework for research.

%
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2. WHAT IS MAPPED

The hypothesis we offer is that there are three fundamentally different kinds of

entities that are mapped: systems, concepts, and properties and that all the other

kinds of mappings discussed in the literature are variations on one of the three.

System Mapping. The mapping from the solar system to the atom that Gentner

(Gentner, 1983) discusses is the classic example of a system mapping. In a system

mapping it is critical to determine two types of mappings (Gentner, this volume):

1. Which components (i.e., concepts) in the source domain are mapped into

hr which components in the target domain.
2. Which properties of each component (including relations between

components) in the source domain are mapped into which properties in the
target domain.

In the solar system/atom analogy, one first has to decide what components map

(sun -- > nucleus, planets -- > electrons) and then what properties map (planets

orbit the sun -- > electrons orbit the nucleus).

Concept mapping. To answer the question (Collins, 1978) "Was Nixon a crook?"

or to decide how likely Linda is to be a feminist bank teller (Tversky and lKahneman.

1980, Smith & Osherson, this volume) requires only a mapping across the properties of

toconcepts. There is no decomposition into components, as there is with a system

mapping. So, in the case of Linda in Smith and Osherson's (this volume) account, you

consider the properties of salary, education. and politics in the mapping process,

comparing Linda and feminist bank tellers with respect to these properties.

Property mapping. The simplest kind of mapping specifies a particular property

of two concepts for comparison, as when one judges whether an object 3 inches in

"'5 diameter is more similar to a quarter or a pizza (Rips, this volume). (This example is

actually a doublt: mapping, discussed later under three-element comparisons, between

ainch object and a quarter, and between a 3 inch object and a pizza - system and

concept mappings can also involve double mappings.) Property mappings differ from

concept mappings in that the concepts are compared with respect to a particular

property rather than with respect to many properties.

Irk
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The critical distinction between these three kinds of mappings is that the system

mappings involve component (or object) mappings as well as property mappings, that

concept mappings involve multiple property mappings, and that property mappings

involve individual properties of two concepts. The distinction between system and

concept mappings is not entirely straightforward. For example, one elementary text

we studied (Collins, Gentner. and Rubin, 1981) explained the composition of the earth

by analogy to a peach. There is the crust which is analogous to the skin, the mantle%

* analogous to the fruit, and the core analogous to the pit. This may appear to be a

concept mapping, since it is a comparison of the properties of two concepts. But in L0.

fact it is a system mapping, since it requires first decomposing the earth and peach

into their components (i.e., the three layers), and then comparing the properties of

N each pair of components (e.g., the skin and crust are both very thin), and their

relations to each other. Thus the distinction between a system mapping and a concept

mapping rests upon whether there is a two-stage process of first mapping an

organized set of components and then the properties of each component (i.e., a system

mapping) or a single-stage process of mapping properties (i.e., a concept mapping).

To give a second example of a system mapping that may be difficult to recognize,

one might hypothesize (Collins and Michalski, 1987) that a bird's pitch depends on the

length of the bird's neck, which is why ducks quack and geese honk, and more

generally why small birds sing and big birds squawk (Malt and Smith, 1984). This

hypothesis might be generated by analogy to the fact that human pitch (e.g., children

4' vs. adult voices) depends on the length of the windpipe. To make the inference about

V'r birds by analogy to humans requires mapping windpipe length onto neck length, and

Vhuman pitch onto bird pitch. Because the analogy involves both a mapping between

their components (e.g. windpipes and neck) and a mapping of some of their

components' properties (relative length), it is a system mapping. In this case the

property mapped (e g., "'pitch is inversely related to length") is a relational property 4

in Gentner's (this volume) terms or a mutual dependency in Collins and Michalski'sN.

(Collins and Michalski, 1987) terms.

There are a number of other kinds of mappings discussed in the literature which

we think are special cases of these three kinds of mappings. We will briefly describe

each.

-. 4.'3
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Procedure mapping. VanLehn and Brown (VanLehn and Brown, 1980) discuss .

mapping between the addition and subtraction procedures we learn in school and C

different addition and subtraction procedures with Dienes blocks (which are wooden._* ?

blocks in three denominations, units are small squares, tens are ten unit blocks long,

and hundreds are ten by ten unit blocks). Similarly, Anderson and Thompson (this

volume) describes mapping between the procedure for factorial and that for summorial.

Mappings of procedures are essentially system mappings, where the components of the "".
.( .t.

procedure must first be mapped (e.g., unit blocks onto the numbers in the right hand .

column, etc.), and the manipulations on those components are subsequently mapped

like properties. 0

Problem mapping. Ross (this volume), Holyoak & Thagard (this volume), and

Carbonell (Carbonell, 1986), among others, discuss mapping between a problem you are

trying to solve and an earlier problem you have solved. This kind of mapping is

frequently used in science texts where students solve new problems by referring back

to the sample problems worked in the text. Gick and Holyoak (Gick and Holyoak, 1980,

1983. Holyoak and Thagard, this volume) discuss the analogy between a fortress .0

problem, where an army must split up in small units to capture a fortress, and

kill a tumor without destroying healthy tissued around it. Problem mappings require

mapping of components first (e.g. ray -- > army units, tumor -- > fortress), and so

they are system mappings.

Story Mappings. Gentner and Landers (Gentner and Landers, 1985) and Ross

(this volume) have studied mappings between stories. These again are simply system

mappings, where it is necessary first to map the characters or objects from one story

to the other and then the relations or events between these entities.

There are undoubtedly other kinds of mappings that are made, but we think they "

will all be variations of the three kinds of mappings we have identified.

)IN
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3. CONTEXTS IN WHICH MAPPINGS OCCUR

Various tasks or real world demands require different kinds of reasoning when

relating entities. Our taxonomy of contexts in which mappings occur consists of two 4

dimensions. type of task and number of entities compared. The overall structure of 1
the taxonomy of contexts is shown in Table 1.

These two dimensions, type of task arid number of elements, define a space of

possible contexts in which mappings are made. There may be some cells empty in the

space, but most combinations are possible.

3.1 TYPE OF TASK

4 e. Type of task breaks down into three basic categories. comparative judgements,

mappings, and conceptual combinations. We will briefly describe six different kinds of

coparative judgements, and then two kinds of mappings. Last, we will briefly discuss

conceptual combination. The comparative -judgment types are derived primarily from 0

the Rips (this volume) and Linda Smith (this volume) papers. This may not be a

complete list of comparison judgements, but it covers the types discussed in this

volume.

A. Comparative Judgements

I. Similarity judgement. Judging how similar two entities are is a common task
in psychological experiments (Tversky, 1977, Rips, this volume, Smith &
Osherson. this volume, Barsalou, this volume). Smith and Osherson (this
volume) and Collins and Michalski (Collins and Michalski, 1987) argue that
similarity judgments affects the certainty of many inferences people make.
Similarity judgments obviously can apply to pairs of systems, concepts, or
properties.

2. Typicality judgments. Typicality has been studied in psychology since Rosch 4
(Rosch, 1975), and plays much the same kind of role in plausible reasoning
as similarity (Collins and Michalski, 1987). Rips (this volume) has shown
convincingly that typicality and similarity judgment are not always made in
the same way, so they must be distinguished in any theory. Like similarity.

Cj~ typicality applies to pairs of systems, concepts, or properties.

3 Categorization judgments. Rips (this volume) discusses the similarity theory

A 5
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Table 1

Contexts in which mappings occur

1. Type of Task

1. Comparative judgments .

a. Similarity judgments

b. Typicality Judgements
-4.c. Categorization judgments

d. Identity judgments
e - Overlap judgments ..

f. Difference judgments

2. Mappings WA

* a. Property mappings
b. Component mappings

3. Conceptual combinations

*%

II. Nubro Ette Cmae

1. To-elmen maping
1. Twoe-element mappings
2. Thure-element mappings

3. Fur-lemet mppins %
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of categorization, which be rejects In any case, categorization requires apcomparison between properties of two entities, the thing to be categorized
and the category. Categorization only applies to systems and concepts, not
to single properties of concepts, except when they are treated as concepts
in their own right.

4. Identity judgments. Linda Smith (this volume) raises the issue of making
identity judgments between entities - that is comparing whether all their
properties are the same. Of rourse, no two entities are ever exactly the
same (e.g. her examples of identical elements are not quite the same -
darkness or shape), so it is necessary to learn what degree of variability of

K' a property can be called the same. Identity judgements therefore depend on
context.

5. Overlap judgments. None of the papers in this volume mention overlap
judgments (e.g. whether therapists are psychiatrists), but logically if one
includes categorization and identity judgments, then overlap and difference
judgments must also be included. Evaluating a "some" statement (e.g. "Some
women are doctors") requires making an overlap judgment (Meyer, 1970).

6. Difference judgments. The question of whether two entities are different
(e.g. "Are whales fish?") also involves a comparison of properties. Like
categorization, identity, and overlap judgments, difference judgments are
contextually defined. For example, whales and fish are different, but both
are animals and can be treated as the same in some contexts, such as
grouping things as plants and animals. *,

The last four of these judgments: categorization, identity, overlap, and difference

correspond to the four possible relations between two circles in Venn diagrams, as

shown in Figure 1. 4'

B. Mappings

The other type of task that is referred to frequently in the literature is one of -

mapping properties, components, or both from the source domain to the target domain.

Property mapping Most of the work on analogy (e.g. Anderson & Thompson, this

ivolume Gentner, this volume, Holyoak & Thagard. this volume) concerns itself with

bringing properties (including relational properties) of objects in the source domain

'4'over into the target domain. A similarity or typicality judgment between the source

and target is made before mapping a property over, and affects the certainty with

which the property is believed to hold for the target domain. For example. before

deciding that the pitch of birds depends on their neck length, based on an analogy to

the human vocal tract, a person would compare humans and birds with respect to

6 %
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their similarity, particularly on those properties related to sound production (in this

case, properties of the relevant components, such as vocal cords and necks). A 0

person's certainty about whether the property holds for birds depends on this

similarity judgment.

Component mapping. Sometimes in the mapping of two systems, whole components

are introduced by the mapping. In the earth/peach analogy, the text introduced two

new components of the earth to students (the mantle and the core) in the course of

explaining the analogy. This same thing can occur when people consider an analogy in

their own mind (Collins and Gentner, 1950). For example, in relating the texture of

foods to materials science, one might notice that chewiness corresponds roughly to

* ~'-elasticity, crispness to ductility, and then wonder what juiciness corresponds to. One

possibility is liquid-filled porosity, a critical concept in geology. '

C. Conceptual Combinations

%: Smith and Osherson (this volume) raise the possibility that conceptual

combination (feminist + bank teller -- > feminist bank teller) is another task that a

theory of mapping should address. We see conceptual combination, as they have

modeled it. as primarily addressing the issue of how property mappings are combined

)r- when there is prior information about the properties involved in the target system.

This becomes particularly important when learning or making predictions from multiple

analogies, and in interpreting descriptive metaphors.

3.2 NUMBER OF ENTITIES COMPARED

Number of entities compared is the other dimension we have identified with

respect to the contexts in which analogies occur. This can range from two, as in the

earth,/peach mapping. to four as in analogies like wolf. dog..tiger cat, and the geometric

analogies considered by Evans (Evans, 1965). Slightly different constraints operate in

- - two, three, and four-element mappings, shown in Figure 2.

Two-element comparisons. Many of the mappings discussed in the literature (e.g.

Gentner's (this volume) water flow to heat flow mapping. and Holyoak & Thagard's (this

volume) fortress problem to ray problem) Eire two-element mappings In a two-element
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mapping there is a source from which properties or components are mapped onto a

target. There are no other concepts, even implicitly, that are compared in a two- 0

element comparison.

Three-element comparisons. A good example of a three-element mapping is the

task used by Rips (this volume) where subjects had to decide whether a three inch

object was more likely to be a pizza or a quarter. In many tasks that appear to be

two-element mappings, there may be a comparison element implicit that subjects

% ~ generate on their own in doing the mapping. For example, if you tell a child that aP

whale is a mammal, they may compare whether whales are more like mammals or fish,

which is a three-element comparison. Three-element comparisons, therefore, compare

properties of X to those of Y vs. Z.

Four-element comparisons. Standard analogy tests pose questions using the

syntactic form W,..Y:Z. We view such problems as falling into two categories, based on e

% whether the analogy's interpretation depends on one or two comparisons. True four-

element comparisons depend on both sets of comparisons, as in the analogy

.4wolf~dog.;tiger.cat. The within-group comparisons (e.g. wolf~dog and tigercat)
determine the properties or dimensions along which the pairs differ (wildness or not),

and the between group comparisons identify the dimensions along which the pairs are

similar (feline or canine class membership). Evans (Evans, 1968) discusses the need for

both kinds of comparisons (relating the components of both W and X and W and Y) in

solving some geometric analogies. '

Some analogies stated in the same syntactic fashion are more properly

interpreted as analogies between two systems, where W and X are related in one

system, while Y and Z are related in an analogous system. For example, Johnson-Laird

(this volume) discusses, the analogy Water. Sluice.:Gas.Jet.- Here, there is a between-

-V system mapping of water -- > gas and sluice -- > jet, but comparison of water and

sluice, or gas and jet is not useful. Instead, there are relational systems relating

each pair (e.g., a sluice directs water and a jet directs gas). True four-element

mappings relate each concept in two different mappings, but in Johnson-Laird s

example, a similarity judgment is required between the functional relations in the two

systems.

. . . . . . . . ..
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4. ISSUES FOR A THEORY OF MAPPING

There are a number of issues running through the papers in this volume and the

literature more generally. In part they reflect the set of subprocesses outlined by

Gentner (this volume), but they have wider scope. Our attempt here is simply to

delineate the set of issues as best we can, and to discuss possible resolutions to

them. We start with the most microscopic issues and work up to the more macroscopic

issues.

How are individual properties compared?

-. Potentially there are two kinds of properties that a theory must take into

account. discrete properties (e.g. male or female) and continuous properties (e.g.

size). Tversky and Gati (Tversky and Gati, 1982) have shown how it is possible to

treat all continuous properties as if they were discrete. Another possibility is to

treat all discrete properties as continuous (a person is on a continuum of male/female '..

and most people fall near one or the other ends of the continuum).

Rips (this volume) addresses the question of how continuous properties are 0

compared for different kinds of three-element comparisons: similarity, typicality, and ._

categorization judgments, which he fnds are judged differently. His results suggest

that categorization judgments are based on the relative height of the distribution -

e.g. a three inch object is more likely a pizza than a quarter, because the 0

distribution of pizzas iq higher at that point. His results for similarity judgments

suggest both height of the distribution and distance from the mean (or mode) come

into play. Typicality judgments appear to fall in between categorization and similarity,

as if some subjects treat them like categorization judgments and others like similarity 0

judgments (or perhaps they are combination judgments).

There are many possible functions for computing any of these judgments for

example, similarity might be based on the relative distance between modes of the

distribution compared, typicality judgments might be simply similarity judgments 4.

between a concept and its superconcept, as Smith & Osherson (this volume) assume.

Rumelhart's (this volume) theory probably makes a prediction as to which of these

functions will best fit the data, but he is not explicit on this point. Most of the other 0

theories take no stand on this issue.e

9
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How are judgments from different properties combined?

6
Tversky (Tversky, 1977) proposes a combining function for similarity judgments,

which Smith and Osherson (this volume) have adopted for their theory of decision

making. The essence of the Tversky combination rule is that matching properties

increase similarity and mismatching properties decrease similarity between concepts.

Mismatching properties consist of two sets: property values of one concept that the

other does not share, and property values of the other that the first does not share.

i Mismatching properties include properties where one concept has a known value and

the other has no known value. Each of these three sets (one matching and two

mismatching properties) is weighted appropriately depending on the direction of the

judgment. Thus, people think North Korea is more like China than China is like North

Korea, berause there are many properties they know about China that do not apply to

North Korea, but few properties they know about North Korea that do not apply to 0

China (Tversky, 1977).

The Tversky rule is defined only over simiiarity judgments and discrete

properties. If one adopts the view that all properties are continuous, then a

modification of the Tversky rule is necessary. Whether it applies to other kinds of

judgments (e.g. categorization judgments) is an open question. And, of course, there

are an infinite number of other combination rules, some of which might still be viable

given Tversky's (Tversky, 1977) data.

How do people access similar entities? .

%

The question of access is fairly central to the papers of Ross, Gentner, Bransford

et al., Barsalou, Brown and Kane. and Holyoak and Thagard (this volume). It is called

noticing" by Ross. All of these papers address the access issue for the case where

the source must be found in memory As Johnson-Laird (this volume) point out, the

source is often given, as when a text explains that the earth is like a peach or the

atom like a solar system. In Ross's paradigm, when one is working problems, a person

may go back through a book to find a similar problem. This access may or may not be

governed by the same properties as the access from memory. ..
.,"A

Gentner (this volume) proposes that attributes (or superficial properties) govern

access more than relational properties. This seems to accord fairly well with both her

10
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data and those of Gick and flolyoak (Gick and Holyoak, 1983). liumelhart (this volume)

takes the position that access is governed by a match on all microfeatures, but in 0

different contexts it may be attributes that match or higher-order relational features.

These positions are compatible if one posits that superficial attributes are the most

available, and therefore will usually dominate higher-order relations in most matches.

There is some evidence (e.g., (Chi, Feltovich and Glaser, 1981)) that part of

becoming an expert is learning to pay attention to higher-order relations rather than

superficial attributes. This also accords with Ross's (this volume) observation that

superficial properties will mislead people if the principles underlying the problem (i.e.

higher-order relations) are confusable. Brown and Kane (this volume) give evidence

that functional fixedness and cognitive embeddedness of problem solving contexts are

sources of diminished accessability to potential analogs in children, as well.

How is knowledge about the source reconstructed?

Ross (this volume) points out that people often have to reconstruct their

knowledge about the source domain after they have accessed an analogy. This

reconstruction process is guided by the knowledge being sought about the target

domain. For example, if people are told that heat flow is like water flow (Gentner, this

volume) since they do not have a particularly good understanding of water flow

(Gentner and Gentner, 1983), they must in part figure out what they know about water

flow: that it flows from one container to another as long as there is a difference in

the height of the water in the two containers, that the surface area of the water in

the container does not matter, that the flow rate is proportional to the diameter of

the connection between the containers, etc. Which properties of the source domain

people think of depends on what aspects of the target they are trying to understand,

as Ross (this volume) has found in his studies.

What governs which properties are transferred?

This is the central argument animating most of the discussion in the analogy 0

literature. We will briefly delineate the different positions.

Ortony (Ortony, 1979) advocates the position that salience imbalance governs

transfer. that is, those properties are transferred that are important in the source 0

domain but not important in the target domain. For example. Sam is a hippopotamus

transfers fatness, since that is a typical property of hippos, but not of people.

"
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Gentner (Gentner, 1983) proposes a syntactic theory that states that, in

W analogies, relational properties are transferred but attributes (i.e. non-relational

properties) are left behind. Furthermore, according to her systematicity principle, v
relational properties that are a part of a system of relations (e.g. the large mass of

the sun attracts the planets into orbiting around it) are more likely to be mapped

across.

Holyoak and Thagard (this volume), Johnson-Laird (this volume), Carbonell

(Carbonell, 1986), and Burstein (Burstein, 1986), while there are differences in their

views, take a position on mapping that appears somewhat different from Gentner.

Their position is that a system (or schema) of properties is mapped over, as Gentner

proposes, but with two differences. (1) attributes will be mapped if they are part of

the system, and (2) the major problem is to decide which system to map over. For 'A

example, if the analogy was made between the solar system and a person tanning

themself under a sun lamp, the properties mapped would have to do with the heat

being transmitted, the person rotating to cover all sides, the yellow color of the lamp,

etc. .,._.
It turns out that the latter criticism may be handled by the structure mapping

% engine (Falkenhainer et al., 1986, Gentner, this volume) that was built recently to

N embody the Gentner theory. This system compares repesentations of two domains to

decide which relations fit into a connected system that can be mapped into the target

domain. Because it is effectively comparing all possible sets of relations between the

objects considered, it is to some degree automatically chosing a "best system" to map

However, some pragmatic. contextual selection mechanisms will almost certainly be

required as well. This is particularly true during learning, when people usually do not

know enough about the target domain to pick out corresponding systems simply by

matching (Burstein, 1986).•.
An important test of any of these computer models (Burstein, 1986, Carbonell.

1986, Gentner, this volume, Holyoak and Thagard, this volume) is whether they can %

'V. select two different mappings from a source domain (e.g. the solar system) depending

on what aspects of the source domain are relevant to the target domain (e.g. tile atom

vs. a person tanning). None of the models has, as yet addressed this central problem

directly.

12 ,, ,
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Whether goals and subgoals guide the selection of the system to be mapped often

arises in the debate between these two positions. But that is probably because the 0

latter researchers are all working with analogies in problem solving, whereas Gentner

is dealing mainly with explanatory analogies. Certainly both sides would agree that '4-

goals are critical properties to map in problem-solving analogies and play the same

central role that causal relations play in explanatory analogies. S

Anderson and Thompson (this volume) rely on a set of three principles (i.e., "no POO.

function is content", "sufficiency of functional specification", and "maximal functional

elaboration") to determine what is mapped. Although it is not clear to us exactly how •

these principles operate, they indicate the use of function as the main criteria for

selecting what to map, and so would seem to fall into the latter camp.

In our view the positions of Gentner on the one hand and that of Holyoak and e.

Thagard, Johnson-Laird, Carbonell, and Burstein on the other hand are not that far 4'

apart given the centrality of systems of properties or schemas that are mapped over.

The Ortony theory is orthogonal to that issue, and could operate in conjunction with

some kind of system mapping. Whether the Anderson and Thompson position is •

genuinely distinct, or reduces to the use of system properties as well, remains to be

seen.

How are multiple mappings merged together?

This issue is raised by Burstein (Burstein, 1985, 1986, 1987), Spiro (this volume)

and Collins and Gent.ner (Collins and Gentner. 1983). In Burstein's work, students

were learning to program and were forced to combine the mappings of systems like

puttings things in boxes and the the interpretation of arithmetic equalities in forming

a mental model to understand computer statements like A=B+I. Collins and Gentner

(Collins and Gentner, 1983, 1987) describe how subjects combined different analogies V
. (e.g. billiard-ball analogy, a rocketship analogy, a crowded-room analogy) in

understanding evaporation processes. It is clear that people frequently construct 0

their understandings of systems by multiple mappings, and so theories will have to %
specify how conflicts are resolved about what properties to map from each analogy.

and whether, in fact, some form of conceptual combination is required to merge

related properties mapped from several different sources. In Burstein's model, S

conflicts between mappings are usually resolved by reasoning from specific examples in

13 S
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the target domain that cause one or another analogical mapping to fail. However, the

hypotheses that are eventually selected must still be integrated with what had been 0

mapped previously or was otherwise known about the target domain (Burstein, 1987).

Burstein (Burstein, 1985) and Collins and Gentner (Collins and Gentner,

193 as raise the issue of vertical integration of mental models. Analogies do not

alasmap onto the same level of description of a target system. In such cases, one

cantdirectly merge analogs. Instead, the mapped structures must be maintained :P

4 distinctly, and rules of correspondence formed between the different views or levels of

abstraction described by the different analogical models.

How are mappings refined?

* - ~After a mapping is made, some properties carried over into the target domain will N4

not apply. How are the correct properties identified and replaced?2 Both Burstein

(Burstein, 1986) and Anderson and Thompson (this volume) address this question in the

context of mapping computer program statements. In Burstein's model, analogically

mapped predictions are compared to the actual results in target domain examples. If

the predictions are wrong, alternative structures are considered for mapping, either

from the same or a different source domain. Anderson and Thompson discuss several .?

examples of failures due to overgeneralization from an analogy, and suggest that they%

may be handled by searching for contextual features that were not mapped. and

adding them as preconditions.

Another kind of refinement occurs when successful analogies are extended to

encompass new sets of corresponding systems or related causal principles. In addition

to mapping new relational properties, this kind of analogical extension can lead to the

introduction of new object or concept correspondences. For example, in the kinds of

demonstration physics experiments that are often used to explain the diffraction and

interference behavior of sound and light by using water wave tanks, a number of

experimental objects are introduced to cause different wave behaviors. Each object

that is introduced in these experiments must be related to an analogous object that

causes a similar kind of interference with light or sound. In this sense, each new

experiment described causes the refinement of the analogy between water waves and

light or sound waves, because new objects and new causal implications are placed in

parallel.

14

1 L s.Ir. r*6., WS



BBN Laboratories Incorporated

What is generalized from a mapping?

This is the question of how, when, and if generalizations are made based on a

mapping between two domains. For example, one hypothesis might be that the

corresponding components in the two systems are replaced by their common supersets.

and the generalization is stored as a set of (possibly generalized) relations on these

common supersets. Both Gentner (this volume), Anderson and Thompson (this volume)

* and Winston (Winston, 1952) have addressed this issue to some degree, although no

specific claims have been made.

It is not at all clear that analogies always lead to new generalizations. Most

analogies are only useful because they map one or two specific pieces of information

from one domain to another. In such cases, the generation of a new general principle

* may not be warranted.

At the other extreme, attempting to generalize from an analogy that related

radically different classes of objects by a new principle calls for a strong form of

*conceptual reclassification, as when sound and light are reclassified as waves. Very

strong evidence of the analogy's pervasiveness may be needed for this kind of

reclassification to occur. Alternatively, "bridging analogies" can be used to show why

%W the analogy is justified. Clement (Clement, 1981, 1986) gives examples of series of

bridging analogies designed to convince people of the generality of phyiscal laws. One

set of these analogies shows how the behavior of a spring is related to the

longitudinal and torsional flex of a wire, by considering intermediate cases where the

wire is partially bent. Clement (Clement, 1986) also discusses Newton's analogy ®

between the moon and an apple falling from a tree, with the a sequence of bridging

analogs where a cannonball is fired at greater and greater speeds until it is in orbit

around the earth.

How does the process of mapping develop?

This is the central issue raised by Linda Smith's paper (this volume). In it, she

proposes that development proceeds from overall resemblance matches to identity

matches and finally to dimensional matches. Her proposal perhaps is best summed up

by saying that children learn to make finer discriminations in their comparison

processing with age.

15
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Her thesis raises the question of how children can make overall resemblance _%

R comparisons without being able to make individual property comparisons. This is not 0

really a paradox from the vantage point of the kind of microfeature theory proposed

by Rumelhart (this volume). Overall resemblance comparison in Rumelhart's theory can

be carried out by comparing two concepts with respect to all their microfeatures.

This requires no identification of microfeatures with particular properties (like color)

of entities in the world. Based on the kind of perceptual learning described by .C

Bransford and his colleagues (this volume), dimensions or subgroups of the

microfeatures will emerge as contrastive sets of microfeatures that inhibit each other.

Making an identity match would seem to require learning how much variability is S

possible on any dimension so that one can assess whether the difference between two

entities falls below the normal range of variability on that dimension. In any case, the

papers of Smith, Rumelhart, and Bransford et al. together promote a consistent picture

of how similarity matching develops. 0

Are analogies helpful for learning?

This issue was raised by Halasz and Moran (Halasz and Moran, 1982). Their

position is that if you give people explanatory analogies, such as the analogy that

computer addresses are like boxes (Burstein, 1986) or that heat flow is like liquid flow

(Gentner, this volume), you lead them to make more wrong mappings than helpful ones.

So they argue that it is better to give people descriptions of the mechanisms involved,

rather than analogies.

There are at least two arguments against the Halasz and Moran (Halasz and

Moran. 1982) position First, when people learn about novel systems, they are going to

impute mechanisms to them. In order to understand any mechanistic description, they 0

have to draw from their stock of basic mechanisms, such as Carbonell (this volume) or

Collins and Gentner (Collins and Gentner, 1983) have described. So, whether you give

students an analogy or not, they are going to make an analogy to some mechanism

they already understand The continuum from remembering, to reminding, to analogy

that Rumelhart (this volume) describes is operating here. Subjects will pull in the

-r mechanism they know about that matches most closely By giving students an explicit

analogy, you then accomplish two things. (a) you make sure they impute the best

* matching mechanism, and (b) you know what wrong inferences they are likely to draw, 0

so that you can try to counter them as you explain the mechanism

16

%j *' * . .p*., , A V ~
, • v%



-~~~B Laoatre Incorporated. .. .. .. -

A seond argment aganst the alaz ad Moan Halsz ad Mran

whol inordr toundrstnd te aom.Thusthedon haverto recituratedh

ATeodagmn gis he Halasz and Moran (Halasz and Moran, 192 oiinaowvr.a ob

1962)c poitohstae tewro analogie fnrdcsto aywog teahings erevesfrore the facothtd

shows fort the soarssem so byetelinasoen the atompislik ar sarfl systmt

satemelnering proesfo the atom Analogieswenhe are pamulfrclarlypoerulwhr

ther isa cmpeingstrctue alead inplae tat he eachr i tringto isldge

VA

%

Th oaafad M rn ( aaz ad M rn 18) psto, h w vr a o b

corec i te naog itroucs oomay rog appng. heefre w wul



nmn.. wx

BBN Laboratories Incorporated

* 5. CONCLUSION

Most researchers are working in a little corner of this framework, which is fine.

One use of the framework is to help them see what the rest of the territory looks like

in order to help them extend their theory to cover the whole territory. By trying to

- extend their theory in this way, it puts additional constraints on theory construction,

which will help researchers refine their theories. Furthermore, as theories are

extended to cover the whole domain, they will bump up against other theories in more :

ways which will lead to fruitful controversies and issues to be settled empirically.

*Psychology and artificial intelligence have a tendency to construct task-based D
1*,-

theories and need to enforce on their theorists the desirability of constructing more

global theories.
A
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